

offizielle Version

Ein Skript von Ondrej Burkacky

Toxikologie von Oliver Schön

downloaded from:

© Ondrej Burkacky 1999-2000, downloaded @ www.chemiestudent.de

Ionenlotto - Skript

Allgemeines Vorwort zum Skript

Hallo lieber Leser! Ersteinmal danke, daß Du Dir das Skript besorgt hast, es wurde hergestellt, um zu vermeiden, daß weitere Generationen von heranwachsenden Chemikern aus Frust vom Ionenlotto das Studium hinschmeißen.

Das Skript ist analog zum Praktikum, wie es im Sommersemester 1999 über die Bühne ging, aufgebaut. Es beginnt mit einer kurzen Einführung, dann folgt schon die erste Gruppe und so weiter bis zur Gesamtanalyse, die sozusagen den Höhepunkt des Leids darstellt. Die Analysemethoden wurden so ausgewählt, daß sie in der Praxis relativ wirksam sind. Natürlich gibt es zuzüglich noch weitere Methoden, die mehr oder weniger im Jander-Blasius beschrieben werden, manche von diesen mögen unter gewissen Umständen auch brauchbar sein, es hat sich jedoch zum Leidwesen von uns allen gezeigt, daß man so manchen Nachweiß einfach vergessen kann.

Man sollte sich trotzdem das oben erwähnte Buch besorgen, denn alleine für die Vorbereitung vor den Kolloquien ist es unumgänglich. Des weiteren finden sich im Skript von Zeit zu Zeit Verweise, die sich auf die 14. Auflage beziehen, und dazu dienen sollten, genaueres nachzuschlagen oder andere Nachweise auszuprobieren.

Aber nun genug der Worte, das Praktikum ist anstrengend genug und so sollte man langsam anfangen, denn man will ja auch mal fertig sein...

P.S.: Solltet Ihr Anregungen oder Fehlerhinweise zu diesem Skript haben, so schreibt einfach eine Mail an ionenlotto@chemiestudent.de.

Allgemeine Hinweise

Blindproben

Sie sind unumgänglich bei sehr vielen Versuchen, um den Fehler, der durch subjektive Wahrnehmung entsteht, weitestgehend zu reduzieren. So entscheidet die Blindprobe eher als der Nachbar ob das Rot nun wirklich das Rot ist oder nicht. Auch eignen sich Blindproben um festzustellen, ob ein Nachweis etwas taugt oder nicht, denn wenn dieser nicht einmal mit der Blindprobe funktioniert, ja dann

Guter Kontakt zum Mixer

Obwohl es manche Studenten nicht glauben wollen ein Mixer ist auch nur ein Mensch und kann ab und zu Mitgefühl zeigen. Es kann auch mal vorkommen, daß er sich irrt, doch offiziell kommt dieses ja nicht vor.

Aufschluß

So ziemlich das letzte, was man versuchen kann, wenn sich ein Zeug überhaupt nicht lösen will, selbst wenn man darauf gut einredet.

Konzentration

Hier ist nicht so sehr die eigene sondern die der Stoffe im Mörser gemeint, denn sie ist meistens ein Faktor der gerne unterschätzt wird. So können manche Nachweise, die sonst wunderbar funktionieren bei einer geringen Konzentration an dem nachzuweisenden Stoff gänzlich versagen, oder unerwartete Ergebnisse liefern.

Ionenverschleppung

Oder wieso konnte ich schon wieder Eisen nachweisen, obwohl es gar nicht drinnen ist. Tja, die Lösung dieses Problems ist die gefürchtete Ionenverschleppung, ein Problem der unsauberen Arbeitsgeräte. Leider ist die Lösung entweder ein gewisser Kapitalaufwand, mit dem man sich genügend Reagenzgläser und Pasteurpippetten kaufen kann, und diese nach der Benutzung wegschmeißt, oder die sorgfältige Reinigung. Zu diesem Zweck eignet sich ein Reagenzglasputzer einigermaßen, jedoch ist es geeigneter die Reagenzgläser gründlich auszuwaschen und dann im Ofen zu trocknen.

Erfahrungsgemäß geht auch eine große Gefahr von folgenden Chemikalien aus, die dazu neigen verunreinigt zu sein: HNO_3 (Cl⁻ haltig), Chlor- und Bromwasser (zu lange offen \rightarrow Entweichen von Br_2 und Cl_2), Blutlaugensalz (Verschmutzung durch Eisen \rightarrow Nachweis immer positiv), festes KI (Gelbfärbung bei Verschmutzung), Ag NO_3 (Niederschlagsbildung)

Besondere Chemikalien

Manche Chemikalien sind zwar im Saal nicht vorhanden, sie sind jedoch in der Ausgabe verfügbar:

Chemikalien-Wunschli	iste
Chloroform	
Formaldehyd	
Kieselsäure	Fluorid-Nachweis
Perchlorsäure	Kaliumnachweis
Schweflige Säure	Chlornachweis
Festes KCN	div. Fällungen
L+ Weinsäure	
Na-Rhodizonat	Ba, Sulfat Nachweis

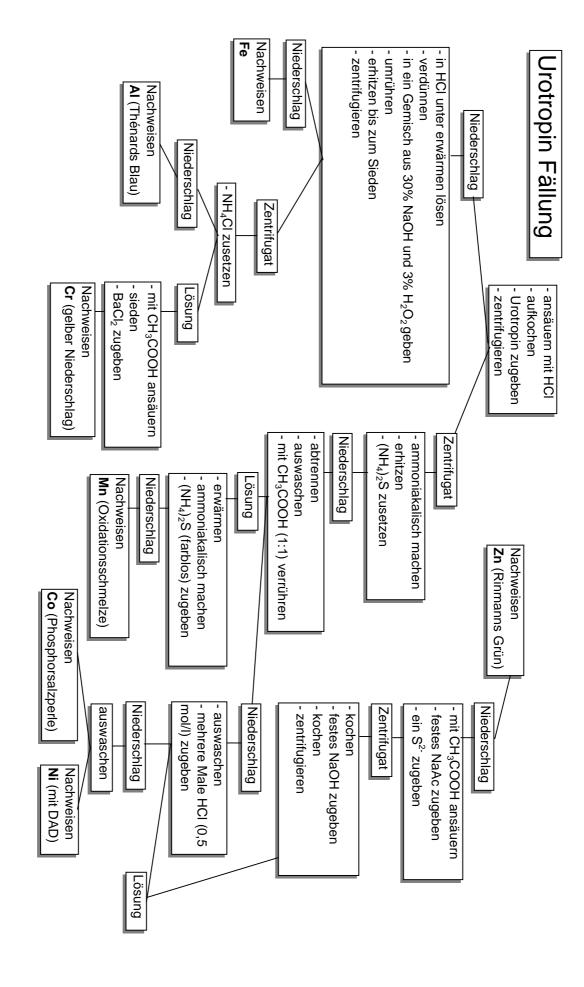
Begriffsdefinitionen

Begriff	Erklärung
Nachsubstanz	Nachschub, also mehr Substanz derselben, leider wahrscheinlich
	unbekannten Zusammenstellung
Wiederholung	Ist die Angabe im Praktikumsheft falsch, muß man wieder von vorne
	anfangen
+ (Zahl)	Heißt, daß man Ionen angegeben hatte, die sich nicht im Mörser befunden
	haben
- (Zahl)	Man hat Ionen, die man hatte, nicht angegeben
Als Beispiel: +2, -1	Zwei Ionen zuviel angegeben, und ein Ion fehlt. Mit anderen Worten: ein
	Ion ist gar nicht drinnen und eins ist falsch

Zeichenerklärung

In diesem Skript werden verschiedene Zeichen verwendet um das Zurechtfinden zu erleichtern

- © Guter Nachweis, funktioniert sehr oft
- Störungen (meistens durch eventuelles Vorhandensein von anderen Chemikalien)
- Achtung, wichtiger Hinweis
- Schlecht funktionierender Nachweis (meistens nur bei Stoffen angegeben, für die es sonst keine besseren Nachweise gibt)
- → Weiter, Folgepfeil, dann ...


Ammonsulfid

Kaum hat man überprüft, ob man wirklich auch alles in seiner Kiste hat, geht es schon los. Die erste Aufgabe ist noch relativ leicht, denn schließlich sollten die Störungen bei Einzelsubstanzen minimal sein. Allerdings wird einem da auch schon mal das Leben schwer gemacht, denn manchmal scheint das Zeug richtig resistent gegen jegliche Chemikalien zu sein. Ist dies der Fall so muß man leider auf folgende Aufschlüsse zurückgreifen:

Aufschlüsse (Seite 531)	
Soda-Pottasche-	Substanz mit der sechsfachen Menge Geeignet für: Al ₂ O ₃ , AgHal,
Aufschluß	K ₂ CO ₃ und Na ₂ CO ₃ in einem Tiegel Silicate vermischen und bis zum schmelzen
	erhitzen. Erkaltete Schmelze mit H ₂ O aufnehmen.
Saurer Aufschluß	Substanz mit der sechsfachen Menge Geeignet für: Fe ₂ O ₃ , TiO ₂ KHSO ₄ verreiben und schmelzen. Weiter
	bis auf mäßig Rotglut erhitzen und mit verd. H ₂ SO ₄ lösen.
Oxidationsschmelze	Substanz mit der dreifachen Menge an Geeignet für: FeCr ₂ O ₄ , Cr ₂ O ₃ Na ₂ CO ₃ und NaNO ₃ (1:1) verschmelzen.
Freiberger Aufschluß	Substanz mit der sechsfachen Menge an Geeignet für SnO ₂ Schwefel und Na ₂ CO ₃ (1:1) schmelzen.

Hat man seine Substanz erst einmal in Lösung gebracht, steht nichts mehr im Wege um die Nachweise auf den nächsten Seiten durchzuführen. Übrigens die Übersichtstabelle eignet sich vorzüglich zum ankreuzen ©.

Ach ja einen sogenannten Urotropin Trennungsgang gibt es auch. Eine Grafik befindet sich auf der nächsten Seite. Es ist jedoch ziemlich schwierig diesen Trennungsgang sauber durchzuführen. Da die Nachweise dann sowieso in der selben Weise verlaufen wie die Einzelnachweise, und die Störungen nicht besonders ausgeprägt sind, sollte man sich selbst ein Bild davon machen ob der Trennungsgang sinnvoll ist (zumindest einmal sollte man ihn aber gemacht haben, den schließlich macht die Übung ja den Meister ©).

© Ondrej Burkacky 1999-2000, downloaded @ www.chemiestudent.de

Ionenlotto - Skript

Kationen	Nachweis	Probe 1	Probe 2	Probe 3
Zn	mit Blutlaugensalz> braun			
Mn	in HNO₃ ansäuern, PbO₂ zugeben, erhitzen, violett			
Fe	Blutlaugensalz -> blau, KSCN -> rot			
Cr	Phosphorsalzperle: grün			
Al	mit Morin, fluoresziert			
Co	P-Perle: blau, mit NaNO ₂ +NH ₄ Ac -> gelb			
Ni	mit Dimethylglioxim -> rot, nicht voluminös			
NH ₄ ⁺	mit NaOH, angefeuchtetes Indikatorpapier->blau			

Anionen	Nachweis	Probe 1	Probe 2	Probe 3
Cl	mit AgNO₃ als weißes AgCl ausfällen			
SO ₄ ² -	mit Ba(OH) ₂ als weißes BaSO ₄ ausfällen			
NO ₃	mit Lunge			
CO ₃ ²⁻	als BaCO ₃ im CO ₂ Nachweisgerät			

Zink

(Seite 412)

Vorkommen: Zinkblende ZnS

Verwendung: Verzinken (Schutz anderer Metalle)

Oxidationsstufen: + II

Nachweise:

Rinmanns Grün: Ursubstanz und sehr wenig Co(NO₃)₂ in der Oxidationsflamme glühen

→

grün

 $Z_{1}^{+II}O^{-II} + 2C_{0}^{+II}(N^{+V}O_{3})_{2} \rightarrow Z_{1}^{+II}C_{0}^{+III}C_{0}^{+III}O_{2} + 4N^{+IV}O_{2} + 0.5O^{+0}C_{2}$

Mangan

(Seite 406)

Vorkommen: Braunstein MnO₂, Manganspat MnCO₃

Verwendung: in Legierungen, Braunstein als Depolarisator in Batterien

Oxidationsstufen: +I, +II, +IV, +VI, +VII

Nachweise:

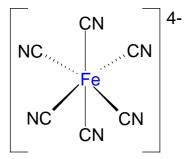
Probelösung mit konz. HNO₃ versetzen und PbO₂ zugeben, einige Zeit erhitzen. Spätestens nach dem Zentrifugieren → violette Färbung der Lösung

 $2 \text{ Mn}^{2+} + 5 \text{ PbO}_2 + 4 \text{ H}^+ \rightarrow 2 \text{ MnO}_4^- + 5 \text{ Pb}^{2+} + 2 \text{ H}_2\text{O}$

 \odot Probleme: Ionen, die MnO₄ wieder reduzieren (Γ , Cl ... – können aber mit AgNO₃ ausgefällt werden)

Eisen

(Seite 415)


Vorkommen: Roteisenstein Fe₂O₃, Magneteisenstein Fe₃O₄, Eisenspat FeCO₃, Pyrit FeS₂

Verwendung: Gußeisen, Stahl Oxidationsstufen: +II, +III

Nachweise: (auf einer Tüpfelplatte durchführbar)

© Berliner Blau bzw. Turnbulls Blau

Probelösung mit $K_4[Fe(CN)_6]$ bzw. mit $K_3[Fe(CN)_6]$ versetzen, es tritt eine blaue Färbung ein (bzw. braun bei Fe^{+III})

© Als Eisenthiocyanat

Probelösung mit KSCN versetzen → rot

 $Fe^{3+} + 3 SCN^{-} \rightarrow Fe(SCN)_{3}$

Chrom

(Seite 429)

Vorkommen: Rotbleierz PbCrO₄, Chromeisenstein FeCr₂O₄

Verwendung: Metallüberzug **Oxidationsstufen:** +III, +VI

Nachweise:

Phosphorsalzperle → smaragdgrün NaNH₄HPO₄ → NaPO₃ + NH₃ + H₂O

Aluminium

(Seite 432)

Vorkommen: Alumosilikate, rotes Bauxit

Verwendung: Hoch-, Industrie- und Apparatebau

Oxidationsstufen: +III

Nachweise:

Thénards Blau: Ursubstanz und sehr wenig Co(NO₃)₂ in der Oxidationsflamme glühen → blau

$$AI^{+III}_{2}O^{-II}_{3} + Co^{+II}(N^{+V}O_{3})_{2} \rightarrow 2N^{+IV}O_{2} + 0.5O_{2}^{0} + Co^{+II}AI^{+III}_{2}O_{4}$$
 (Spinell)

© *Fluoreszenz mit Morin:* essigsaure Probelösung auf einer Tüpfelplatte (Spinell)mit Morin versetzen und unter einer UV-Lampe betrachten → Fluoreszenz (unbedingt Blindprobe anschauen!)

Morin (Dichelatligand)

Cobalt

(Seite 403)

Vorkommen: Speiscobalt CoAs₃, Cobaltglanz CoAsS

Verwendung: Spezialstähle und Legierungen

Oxidationsstufen: +II, +III

Nachweise:

Phosphorsalzperle: blau

 $Als\ (K,NH_4)_3[Co(NO_2)_6]$: essigsaure Probelösung mit Ammoniumacetat (NH₄CH₃COO) und

Kaliumnitrit (oder NaNO₂) versetzen → gelber Niederschlag (Ethanol erhöht die

Empfindlichkeit der Reaktion)

 $\text{Co}^{2+} + 7 \text{ NO}_2^- + 2 \text{ H}^+ \rightarrow [\text{Co}(\text{NO}_2)_6]^{3-} + \text{NO} + \text{H}_2\text{O}$

Nickel

(Seite 400)

Vorkommen: Gelbnickelkies NiS, Rotnickelkies NiAs

Verwendung: Legierungsbestandteil

Oxidationsstufen: +II, +III

Nachweise:

Mit Dimethylglyoxim → rot, nicht voluminös ⊕ Eisen stört durch Bildung eines roten voluminösen Niederschlags, kann aber durch reichliche Zugabe von NaF maskiert werden.

© Ondrej Burkacky 1999-2000, downloaded @ www.chemiestudent.de

Ionenlotto - Skript

H₂S-Gruppe

Es gibt zwar einen ziemlich gut beschriebenen Trennungsgang, jedoch ist es zum Teil sehr schwierig diesen sauber durchzuführen. Es empfiehlt sich daher sich nur auf das Einleiten von H₂S zu beschränken und die Farbe(n) zu beobachten. Die weiteren Nachweise führt man am besten als Einzelnachweise.

Wie leitet man H₂S ein?

Man füllt ein zu opferndes Reagenzglas mit der fertigen Mischung und verschließt es mit einem Gummistopfen, durch den man zuvor einen Glasstab durchgesteckt hat. An diesen Stab steckt man einen kurzen Gummischlauch an und am anderen Ende von diesem steckt man eine Pasteurpipette rein. Und fertig ist das stinkige Ding.

Nun braucht man nur das Reagenzglas zu erwärmen und das Ende der Pasteurpipette in das Reagenzglas mit der Probelösung einzutauchen.

Auf den nächsten Seiten sind auch die Fällungen mit Reagenzien wie NaOH, NH₃ usw. beschrieben. Diese eignen sich nicht unbedingt als Proben bei der Trennung, sondern sind zum Großteil nur bei Einzelsubstanzen aussagekräftig. Ist dies nicht der Fall, das heißt, wenn sich die Proben doch als Einzelnachweise eignen, wird darauf durch einen © hingewiesen.

H2S Trennung

Kationen	Nachweis	Probe 1	Probe 2	Probe 3
Zn	mit Blutlaugensalz> braun			
Mn	in HNO₃ ansäuern, PbO₂ zugeben, erhitzen, violett			
Fe	Blutlaugensalz -> blau, KSCN -> rot			
Cr	Phosphorsalzperle: grün			
Al	mit Morin, fluoresziert			
Co	P-Perle: blau, mit NaNO₂+NH₄Ac -> gelb			
Ni	mit Dimethylglioxim -> rot, nicht voluminös			
NH_4^+	mit NaOH, angefeuchtetes Indikatorpapier->blau			
Ag	Pfennig			
Hg	Pfennig, mit NH₃ schwarz			
Pb	mit H₂SO₄ als PbSO₄ ausfällen oder Dithizon			
Bi	HNO ₃ sauer + Oxim + KI(fest)> orange			
Cd	mit H₂S gelber voluminöser Niederschlag			
Cu	mit NH₃ und NaOH blau			
Sn	Glühröhrchenprobe			
As	Marshe Probe, löslich in NH ₃ + H ₂ O ₂			
Sb	Marshe Probe			

Anionen	Nachweis	Probe 1	Probe 2	Probe 3
Cl	mit AgNO ₃			
SO ₄ ² -	mit Ba(OH)₂			
NO_3^-	mit Lunge			
CO ₃ 2 ⁻	als CO ₂			

Quecksilber

(Seite 470)

Vorkommen: Zinnober HgS

Verwendung: in physikalischen Apparaturen

Oxidationsstufen: +I, +II

Toxizität: elementares Hg und seine Verbindungen sind sehr giftig

Nachweise:

©*Pfennig Probe*: Cu überzieht sich bei Anwesenheit von Hg mit einem silbernem Überzug. Wurde zum Verdünnen Königswasser gebraucht, muß man HNO₃ zuerst verkochen und dann mit HCl aufnehmen

$$Hg^{2+} + Cu \rightarrow Cu^{2+} + Hg \downarrow$$

NaOH: *schwarzer* (+I) oder *gelber* (+II) Niederschlag, schwerlöslich im Überschuß des Fällungsmittels, löslich in HNO₃

$$Hg^{2+} + 2 OH^{-} \rightarrow Hg \downarrow + HgO \downarrow + H_2O$$

NH₃: schwarzer Niederschlag

HCl: weißer Niederschlag, bei Zugabe von NH3 tiefschwarz

$$Hg_2^{2+} + 2 Cl^- \rightarrow Hg_2Cl_2\downarrow \xrightarrow{+NH_3} Hg^0 + [HgNH_2]Cl$$

H₂S: schwarz

Hg + S₂²⁻ → [HgS₂]²⁻ **KI:** roter Niederschlag ©
Hg₂²⁺ + 2 Γ → Hg₂ I_2 ↓

 $Hg_2I_2 \rightarrow Hg + HgI_2$

Blei

(Seite 474)

Vorkommen: Bleiglanz PbS

Verwendung: z.B. Akkumulatorplatten

Oxidationsstufen: meistens +II Toxizität: täglich 1-2mg sind toxisch

Nachweise:

Pb fällt mit H₂SO₄ als schwerlösliches PbSO₄

NaOH: weißer Niederschlag, löslich in Säuren und starken Basen

 $Pb^{2+} + 2 OH^{-} \rightarrow Pb(OH)_{2} \downarrow$

NH₃: weißer Niederschlag ([Pb(OH)₂]) schwerlöslich im Überschuß

HCl: weiβ, kristallin, in Hitze löslich (PbCl₂)

H₂S: schwarz (PbS)

KI: gelber Niederschlag ©, löslich im Überschuß

 $Pb^{2+} + 2 I^{-} \rightarrow PbI_2$

 $PbI_2 + 2 I^{-} \rightarrow [PbI_4]^{2-}$

Bismut

(Seite 477)

Vorkommen: Bismutglanz Bi₂S₃ **Verwendung**: Legierungen **Oxidationsstufen:** meistens +III

Nachweise:

⊕ HNO₃ sauere Probelösung + Oxim + KI(fest) → orange

NaOH: weißer Niederschlag

NH₃: weißer Niederschlag, gelb beim Kochen

(jeweils $Bi(OH)_3 \rightarrow BiO(OH)$)

H₂S: braunschwarzer Niederschlag, löslich in konzentrierten Säuren (Bi₂S₃)

KI: schwarz, im Überschuß gelb (BiI₃ + $\Gamma \rightarrow [BiI_4]$)

Kupfer

(Seite 481)

Vorkommen: Kupferkies CuFeS₂, Kupferglanz Cu₂S

Verwendung: elektrischer Leiter **Oxidationsstufen**: meistens +II

Toxizität: giftig für Mikroorganismen, für Menschen nur gering

Nachweise:

Nachweis mit $K_4[Fe(CN)_6] \rightarrow$ brauner Niederschlag

 $Cu^{2+} + [Fe(CN)_6]^{4-} \rightarrow Cu_2[Fe(CN)_6] \downarrow$

NaOH: bläulicher Niederschlag ©, beim Erhitzem schwarz

 $Cu(OH)_2$ (erhitzen) \rightarrow $CuO + H_2O$

NH₃: bläulich ☺

 $Cu^{2+} + 4 \text{ NH}_3 \rightarrow [Cu(\text{NH}_3)_4]^{2+}$ **H₂S:** schwarz (CuS, Cu₂S) **KI:** braun, violette Ioddämpfe 2 Cu²⁺ + 4 I⁻ → 2 CuI↓ + I₂

Cadmium

(Seite 486)

Vorkommen: ständiger Begleiter des Zink, reine Cd-Mineralien selten

Verwendung: Metallüberzug zum Korrosionsschutz

Oxidationsstufen: +II

Toxizität: Cd-Ionen sind wesentlich giftiger als Zinkverbindungen

Nachweise:

NaOH: weißer Niederschlag, schwerlöslich im Überschuß (Cd(OH)2)

NH₃: weißer Niederschlag, löslich im Überschuß ([Cd(NH₃)₆]²⁺

H₂S: *gelber* (postkutschengelber) [©] bis braungelber Niederschlag, löslich in halbkonz.

Säuren (CdS)

Arsen

(491)

Vorkommen: geringe Mengen in sulfidischen Erzen

Verwendung: Legierung, Gift **Oxidationsstufen**: +III, +IV und +V

Toxizität: starkes Gift

Nachweise: Marshsche Probe

 $As_2O_3 + 6Zn + 12H^+ \rightarrow 2AsH_3\uparrow + 6Zn^{2+} + 3H_2O$

 $4 \text{ AsH}_3 + 3 \text{ O}_2 \rightarrow 4 \text{ As} \downarrow + 6 \text{ H}_2\text{O}$

 $2 \text{ As} + 5 \text{ H}_2\text{O}_2 + 6 \text{ NH}_3 \rightarrow 2 \text{ AsO}_4^{3-} + 6 \text{ NH}_4^+ + 2 \text{ H}_2\text{O}$

Gutzeitsche Probe (Seite 493)

 $AsH_3 + 6 AgNO_3 \rightarrow Ag_3As \cdot 3 AgNO_3 + 3 HNO_3$

 $Ag_3As . 3 AgNO_3 + 3 H_2O \rightarrow 6 Ag + H_3AsO_3 + 3 HNO_3$

H₂S: *gelber* Niederschlag (As₂S₃)

Antimon

(Seite 497)

Vorkommen: in Silbererzen erhalten

Verwendung: Legierungen **Oxidationsstufen**: +III, +V

Nachweise: Marshsche Probe (Sb löst sich nicht)

Ag⁺ und NH₃: nach einer Zeit scheidet sich schwarzbraunes Silber ab **H**₂**S**: *orangeroter* Niederschlag, löslich in Alkalilauge, konz. HCl

Mit I₂ (Seite 500)

⊗ mit Fe-Nagel: es scheiden sich schwarze Flocken ab (nicht nur bei Sb)

Zinn

(Seite 502)

Vorkommen: Zinnstein SnO₂

Verwendung: Weißblech, Legierungen

Oxidationsstufen: +II, +IV

Nachweise:

NaOH: weißer Niederschlag, löslich in Säuren und im Überschuß des Fällungsmittels, beim

Kochen in stark alkalischer Lösung fällt schwarzes metallisches Zinn aus

 $\operatorname{Sn}^{2+} + 2 \operatorname{OH}^{-} \rightarrow \operatorname{Sn}(\operatorname{OH})_2 \downarrow$

 $Sn(OH)_2 + OH^- \rightarrow [Sn(OH)_3]^-$

 $2 \left[\text{Sn(OH)}_3 \right]^{3-} \rightarrow \text{Sn} \downarrow + \left[\text{Sn(OH)}_6 \right]^{2-}$

NH3: weißer Niederschlag, im Überschuß schwerlöslich (Sn(OH)₂)

H₂S: brauner Niederschlag, löslich in konz. HCl (verschiebt das GG nach links)

 $\operatorname{Sn}^{2+} + \operatorname{H}_2 \operatorname{S} \rightarrow \operatorname{SnS} \downarrow + 2 \operatorname{H}^+$

Silber

(Seite 516)

Vorkommen: Silberglanz Ag₂S

Verwendung: elektr. Leiter, Schmuck **Oxidationsstufen:** +I, auch +III und +II

Nachweise:

Pfennig Probe: schwarzer Überzug

NaOH: brauner Niederschlag, schwerlöslich im Überschuß, löslich in Säuren

 $2 \text{ AgOH} \rightarrow \text{Ag}_2\text{O}\downarrow + \text{H}_2\text{O}$

NH₃: brauner Niederschlag im Überschuß löslich (Ag₂O) H₂S: schwarzer Neiderschlag, löslich in HNO₃ (Ag₂S) Cl-: dunkelviolette Färbung (nach einiger Zeit) (AgCl)

Anionen Vorproben

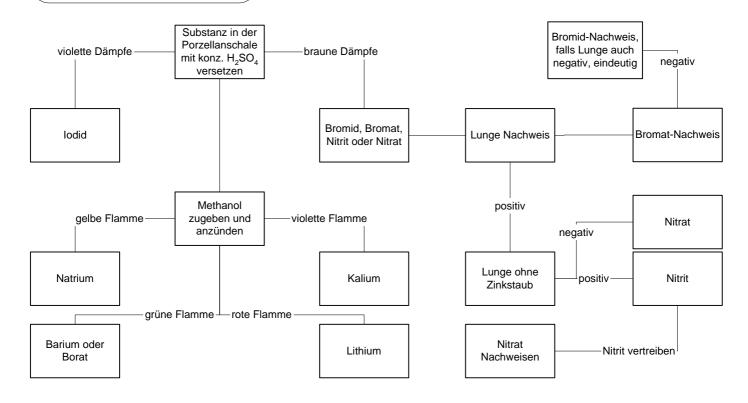
- 1. Prüfen auf **Cyanid**: statistisch gesehen können Cyanid nur wenige Leute riechen, für diese ist aber der Geruch unverwechselbar und somit eignen sie sich besonders gut als Nachweis ☺. Ansonsten kann man auch den Nachweis als Berliner Blau durchführen (Abzug!)
- 2. Bei Vorhandensein von Cyanid unbedingt Gefahrenhinweise lesen (* Lebensgefahr)
- 3. Substanz im Abzug mit H₂SO₄ konz. versetzen: Dämpfe beobachten

	Iod → weiter bei 4
Braune Dämpfe	Brom oder nitrose Gase → weiter bei 5

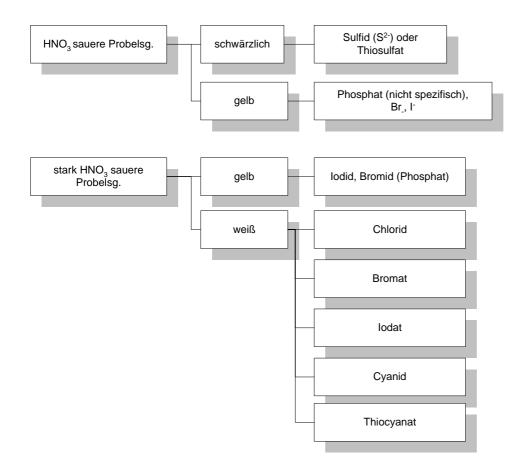
- 4. Die Substanz enthält Iod, man sollte trotzdem vorsichtshalber auf Iodat prüfen. Des weiteren kann man nun BrO₃ und ClO₃ wegen einer möglichen Redoxreaktion ausschließen. Man trennt nun Iod mit Chloroform und KMnO₄ ab und prüfe die überstehende Lösung (sie sollte fast farblos sein, die untere Phase violett) auf Bromid.
- 5. Lunge Nachweis durchführen, fällt er negativ aus, so enthält die Substanz entweder Bromid oder Bromat. Ist der Lunge Nachweis positiv so führt man ihn nochmals ohne Zink Zugabe aus. Eine Rotfärbung deutet diesmal deutlich auf NO₂⁻. NO₃⁻ kann aber immer noch anwesend sein.
- 6. Man bereite sich eine Fe(SCN)₃-Lösung aus FeCl₃ und KSCN zu und prüft ob die Probelösung diese entfärbt. Ist dies der Fall, dann beinhaltet die Substanz wahrscheinlich entweder **Fluorid** oder **Phosphat**. Somit muß man den Thiocyanitnachweis mit Co(NO₃)₂ durchführen.
- 7. Man führt den Boratnachweis aus. Die Flammenfärbung verrät einiges.

grün	Borat oder Barium
violet	Iod
braun	Brom oder nitrose Gase
rot	Lithium
violett	Kalium
gelb	Natrium

Sollte die Substanz zudem noch nach H₂S stinken, beinhaltet die Probe auch Sulfid oder Thiosulfat.


8. Zuerst schwach, dann stark mit HNO₃ ansäuern und mit AgNO₃ fällen

weißer Niederschlag	sagt fast nichts aus		
gelber Niederschlag	Iodid (käsiger gelber Niederschlag), Bromid, Phosphat		
schwärzlicher Niederschlag	Kann von S ²⁻ oder S ₂ O ₃ ²⁻ stammen, verschwindet beim stärkeren		
	Ansäuern mit HNO ₃		
© kein Niederschlag	Komisch, aber möglich: die Probe beinhaltet kein Cl-, CN-, BrO ₃ -,		
	IO ₃ , SCN (wären alle weiß ausgefallen), weiters kein Br, I, PO ₄ ³ -		
	(wären gelb ausgefallen) und auch kein S ² - oder S ₂ O ₃ ² -		


9. eine weitere Probelösung mit HCl ansäuern und BaCl₂ oder Ba(OH)₂ zugeben. Sollte ein Niederschlag ausfallen, dann handelt es sich höchstwahrscheinlich um BaSO₄, Ba(SiF₆) (sollte durch kochen verschwinden) oder BaF₂ (verschwindet mit konz. HCl)

Ionenlotto - Skript

Proben aus der Ursubstanz

Fällen mit AgNO₃

CN ♣ (Seite 356)

Nachweis als Berliner Blau: Probelösung + FeSO₄ Lsg. + FeCl₃ Lsg. in HCL → grünlichblaue bis tiefblaue Färbung

 $6 \text{ CN}^2 + \text{Fe(OH)}_2 \rightarrow [\text{Fe(CN)}_6]^{4-} + 2 \text{ OH}^2$

Nachweis als Fe(SCN)₃: Probelsg. + NH₄S (gelb) \rightarrow eindampfen \rightarrow FeCl₃ in HCl \rightarrow Rotfärbung zeigt SCN- bzw. CN- an \otimes Störungen: F und PO₄³- entfärben Fe(SCN)₃, diese Störung kann man aber auch als Nachweis für eben diese Ionen benutzen

 $CN^{-} + S_{x}^{2-} \rightarrow SCN^{-} + S_{x-1}^{2-}$ $Fe^{3+} + 3 SCN^{-} \rightarrow Fe(SCN)_3$

SCN (Seite 361)

Mit Co(NO₃)₂: Bildung vom löslichen blauen Co(SCN)₂ (ausschüttelbar mit Ether) Mit FeCl₃-Lsg.: Probe schwach mit HNO₃ ansäuern, FeCl₃ im Überschuß zugeben → Bildung von rotem in Ether löslichen Fe(SCN)₃ Störungen: siehe CN⁻

 S^{2} (Seite 298)

Mit HCl oder $H_2SO_4 \rightarrow H_2S$ Geruch oder durch ein in PbAc getränktes Filterpapier (\rightarrow Bildung vom schwarzen PbS) $H_2S + Pb^{2+} \rightarrow PbS \downarrow + 2 H^+$

 SO_3^2 (Seite 303)

- ➤ In eine Lsg. aus Natriumpentacyanotrosylferrat und ZnSO₄ wird die neutrale Probe zugegeben \rightarrow blaßrot \rightarrow rot $SO_3^{2-} + [Fe(CN)_5NO]^{2-} + 2 Zn^{2+} \rightarrow Zn_2[Fe(CN)_5NOSO_3]$
- ➤ Neutralisierte Lsg . + einige ml Formaldehyd + 1 Tropfen Phenolphtaleinlsg. → Indikator nach tiefrot (Vorsicht: zuerst testen ob der Indikator nicht schon alleine umschlägt) $SO_3^{2-} + HCHO + H_2O \rightarrow HCH(OH)(SO_3)^- + OH^-$

SO₄²⁻ (Seite 306)

 $\overline{SO_4^2 - + Ba^2 +} \rightarrow BaSO_4$

Einer HCl-sauere-Lsg. BaCl₂ oder Ba(OH)₂ zusetzen (es kann auch Ba[SiF₆] ausfallen, dieses ist aber in heißer konz. HCl löslich)

© Entfärbung von Bariumrhodizonat (Seite 640): Die Lösung aus Na-rhodizonat und Ba²+ wird entfärbt

 $S_2O_3^2$ (Seite 309)

 $mit AgNO_3 \rightarrow wei\beta \rightarrow gelb \rightarrow orange \rightarrow braun$

 $S_2O_3^2 + 2 Ag^+ \rightarrow Ag_2S_2O_3 \downarrow (Ag_2S_2O_3 + H_2O \rightarrow Ag_2S (schwarz) + H_2SO_4)$

 $Ag_2S_2O_3 + 3S_2O_3^{2-} \rightarrow 2[Ag(S_2O_3)_2]^{3-}$

mit FeCl₃ \rightarrow rotviolettes Zwischenprodukt \rightarrow Violettfärbung (Unterschied zu SO_3^2 -)

 $S_2O_3^{2-} + Fe^{3+} \rightarrow [Fe(S_2O_3)]^+ \text{ (rotviolett)}$ 2 $[Fe(S_2O_3)]^+ \rightarrow 2 Fe^{2+} + S_4O_6^{2-}$

PO₄ (Seite 340f)

- ➤ Nachweis als Zr₃(PO₄)₄: mit ZrOCl₂ entsteht ein weißer flockiger Niederschlag (d eine Trübung ist kein Niederschlag, meistens muß man eine Weile warten oder erwärmen, danach bildet sich ein sehr zähflüssiger weißer Niederschlag)
- ➤ \$\Pi\$Als Ammoniummolybdophosphat: salpetersauere Lsg. → erwärmen, in der Kälte Reagenzlsg. zugeben → gelber Niederschlag (Fällung kann man durch einen Tropfen NH₃ beschleunigen) ③ Kieselsäure kann stören, sollte allerdings beim Kochen verschwinden, AsO₄³⁻ stört

 $HPO_4^{3-} + 23 H^+ + 3 NH_4^+ + 12 MoO_4^{2-} \rightarrow (NH_4)_3[P(Mo_3O_{10})_4 . aq] \downarrow + 12 H_2O$

Cl (Seite 270)

♦ der AgCl Niederschlag wird filtriert; 1 ml K₃[Fe(CN)₆]-Lsg. und wenige Tropfen NH₃ werden zugesetzt. Bei Anwesenheit von Cl überzieht sich der Niederschlag mit einer braunen Schicht.

 $AgCl + 2NH_3 \rightarrow [Ag(NH_3)_2]^+ + Cl^-$

- $3 [Ag(NH_3)_2]^+ + [Fe(CN)_6]^{3^-} \rightarrow Ag_3[Fe(CN)_6] + 6 NH_3$ mit AgNO₃ fällen, abzentrifugieren, mit einer gesätt
- ➤ mit AgNO₃ fällen, abzentrifugieren, mit einer gesättigten (NH₄)₂CO₃-Lsg. digerieren (untermischen), AgBr und AgI gehen nicht in Lösung, Cl⁻ dagegen schon, ein Teil der Lösung wird abgesaugt (mit Pasteurpipette) und mit AgNO₃ auf Cl⁻ geprüft → weißer am Licht allmählich rosafarbener Niederschlag

ClO₃ (Seite 275)

Bei Zugabe von HCl → Cl₂ Geruch

 $ClO_3^- + 5 Cl^- + 6 H^+ \rightarrow 3 Cl_2 \uparrow + 3 H_2O0$

© 🤊 ♦ Verreiben mit elementarem Schwefel → es kracht 🕾 ähnliche Reaktion: Bromat

BrO₃ (Seite 282)

Br (Seite 646 bzw. 280)

 ⊕ Nachweis durch Bildung von Eosin: Probelösung + Fluorescein + (Eisessig + 30%ig H₂O₂ 1:1), auf einer Porzellanschale eindampfen → roter Fleck. ⊕ Störungen: Iod: braunrot, kann man durch KNO₂ und Eisessig zu I₂ oxidieren und in Ether ausschütteln

I (Seite 284)

mit $AgNO_3 \rightarrow$ richtig gelber Niederschlag (AgI), in HNO₃ und in Ammoniak schwer löslich Nachweis mit Chlorwasser: mit verd. H₂SO₄ angesäuerte und mit CHCl₃ (Chloroform) unterschichtete Lsg. wird tropfenweise mit Chlorwasser versetzt. Die organische Phase färbt sich violett (I₂). Ist Br⁻ anwesend tritt nach violett braun (kann ausfallen)und schließlich eine gelbe Färbung ein.

2 Γ + Cl₂ → Γ ₂ + 2 Γ Cl⁻ Γ ₂ + 5 Γ Cl₂ + 6 Γ H₂O → 10 Γ HCl + 2 Γ HIO₃ Γ ₂ + 3 Γ Cl₂ → 2 Γ Cl₃

Vertreibung von I₂: mit KNO₂ in schwefelsauerer Lsg.

IO₃ (Seite 287)

mit Phosphinsäure (hypophosphorige Säure – HPH₂O₂) → nach 2 bis 3 Minuten Zugabe von Stärkelösung → deutliche Blaufärbung

 $12 \text{ HIO}_3 + 15 \text{ HPH}_2 \rightarrow 6 \text{ I}_2 + 6 \text{ H}_2\text{O} + 15 \text{ H}_3\text{PO}_4$

➤ Reaktion mit **AgNO**₃: der AgIO₃ Niederschlag wird in Ammoniak gelöst, die Lösung abgesaugt, bei tropfenweiser Zugabe von H₂SO₃ scheidet sich gelbes AgI ab (dieses ist in NH₃ schwer löslich)

AgIO₃ + 2 NH₃
$$\rightarrow$$
 [Ag(NH₃)₂]⁺ + IO₃
5 SO₂ + 2 IO₃ + 4 H₂O \rightarrow I₂ + 5 SO₄⁻ + 8 H⁺
I₂ + SO₂ + 2 H₂O \rightarrow 2 I + SO₄²⁻ + 4 H⁺

 $\overline{{\rm O_2}^2}$ (Seite 293)

 $\overline{\text{K}_2\text{Cr}_2\text{O}_7}$ Lsg. mit H_2SO_4 + einige ml Ether \rightarrow kühlen im Eiswasser \rightarrow Probelsg. vorsichtig an der Wand einlaufen lassen \rightarrow blauer Ring

$$4 \text{ H}_2\text{O}_2 + \text{Cr}_2\text{O}_7^{2-} + 2 \text{ H}^+ \rightarrow 2 \text{ Cr}\text{O}_5 + 5 \text{ H}_2\text{O}$$

F (Seite 262)

Ätzprobe: in einem Bleitiegel wird die Probelsg. mit konz. H₂SO₄ übergossen. Der Tiegel wird mit einem Objektträger abgedeckt. Bei vorsichtiger Erwärmung wird das Glas duch HF angeätzt.

$$MF_2 + H_2SO_4 \rightarrow MSO_4 + 2 HF$$

 $4 HF + SiO_2 \rightarrow SiF_4 \uparrow + 2 H_2O$

- ➤ **Wassertropfenprobe**: Probe + Kieselsäure im Bleitiegl vermischen, H₂SO₄ konz. zugeben, mit einem Deckel mit Loch abdecken, mit H₂O angefeuchtetes schwarzes Filterpapier drauflegen, erwärmen. Ein **kräftig** weißer Fleck deutet auf F hin.
- ➤ **Kriechprobe**: Probe in einem trockenem Reagenzglas mit H₂SO₄ konz. versetzen, beim Umschütteln läuft die Flüssigkeit nicht mehr an der Wand des Reagenzglases herunter, sondern 'kriecht' vielmehr (am besten Blindprobe machen) das Reagenzglas nicht nochmal für diesen Nachweis verwenden

$\overline{NO_3}$ (Seite 331)

© Lunge (Sulfanilsäure + α-Naphtylamin) + Zn-Staub, NO₂ ergibt dieselbe Reaktion

$$\begin{bmatrix} O_3S & & & \\ & + & HNO_2 & \frac{CH_3CO_2H}{-2H_2O} & O_3S & \\ & & &$$

NO₂ (Seite 328)

Lunge, funktioniert auch ohne Zugabe von Zn-Staub

FeSO₄ in **schwach** sauerer Lsg. → braun

$$[Fe(H_2O)_6]^{2+} + NO_2^- + 2H^+ \rightarrow [Fe(H_2O)_6]^{3+} + NO + H_2O$$

 $NO + [Fe(H_2O)_6]^{2+} \rightarrow [Fe(H_2O)_5NO]^{2+} (braun) + H_2O$

Vertreibung von NO₂: mit NH₃, (NH₂)HSO₃ oder Harnstoff (NH₂)₂CO

 $HNO_2 + NH_3 \rightarrow N_2 \uparrow + 2 H_2O$

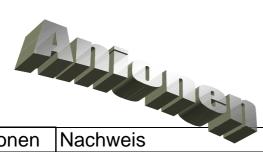
 $HNO_2 + (NH_2)HSO_3 \rightarrow H_2SO_4 + N_2\uparrow + H_2O$

 $HNO_2 + (NH_2)_2CO \rightarrow CO_2\uparrow + 3 H_2O + 2 N_2\uparrow$

SiO_3^2 (Seite 366)

- ➤ Wassertropfenprobe: analoge Durchführung wie bei F-, aber mit CaF₂ statt Kieselsäure
- ➤ Stark verdünnte Probelsg. wird schnell mit viel HNO₃ angesäuert und die klare Lsg. mit viel Ammoniummolybdatlsg. versetzt → es tritt eine Gelbfärbung auf ② PO₄³⁻ stört: Niederschlag abfiltrieren, die im Filtrat verblieben Molybdophosphate mit 1%iger Oxalsäure zerstören → schwach erwärmen → Kieselsäure nach einigem Warten nachweisen

$$H_4SiO_4 + 12 MoO_2^{2+} + 12 H_2O \rightarrow H_4[Si(Mo_3O_{10})_4] + 24 H^+$$


 BO_3^{2-} (Seite 371)

© Nachweis durch **Flammenfärbung**: Die Probe wird in einer Porzelanschale mit konz. H₂SO₄ und Methanol versetzt und angezündet. Eine deutlich grüne Flamme deutet auf BO₃²-hin.

$$H_3BO_3 + 3 CH_3OH \xrightarrow{H_2SO_4(konz.)} B(OCH_3)_3 + 3 H_2O$$

 $B(OCH_3)_3 + 3 H_2O \xrightarrow{} H_3BO_3 + 2 CH_3OH$

© Ondrej Burkacky 1999-2000, downloaded @ www.chemiestudent.de

Ionenlotto - Skript

Anionen	Nachweis	Probe 1	Probe 2	Probe 3
CN ⁻	Nachweis als Berliner Blau			
SCN ⁻	mit Co(NO ₃) ₂ > blau			
S ²⁻	mit HCl H ₂ S Geruch, PbAc-Papier>schwarz			
SO ₃ 2-	Lsg. + Formaldehyd + Phenophtalein> rot			
SO ₄ 2 ⁻	Entfärbung von Bariumrhodizonat			
S ₂ O ₃ ²⁻	mit FeCl ₃ > Violettfärbung			
PO ₄ ³⁻	mit ZrOCl ₂ > weißer flockiger Niederschlag			
Cl	AgNO ₃ , (NH ₄) ₂ CO ₃ , wieder AgNO ₃			
Br ⁻	Lsg. + Fluorescein +(Eisessig+H ₂ O ₂)->eindampfen->rot			
Γ-	violette Dämpfe,Lsg.+H ₂ SO ₄ +CHCl ₃ +Chlorwasser->violett			
CIO ₃	Verreiben mit elementarem Schwefel> es kracht			
BrO ₃	Mit MnSO ₄ und H ₂ SO ₄ > Rotfärbung			
O ₂ ²⁻	K ₂ Cr ₂ O ₇ +H ₂ SO ₄ +Ether>kühlen +Lsg> blauer Ring			
IO ₃	Lsg. +AgNO ₃ , in NH ₃ lösen + H ₂ SO ₃ -> gelbes AgI			
F ⁻	Ätzprobe, Kriechprobe, Wassertropfenprobe			
SiO ₃ ² -	Wassertropfenprobe			
BO ₃ ³⁻	+H ₂ SO ₄ +Methanol -> grüne Flamme			
CO ₃ 2-	CO ₂ Nachweisgerät			
NO ₂	Lunge, mit FeSO ₄ in schwach sauerer Lsg>braun			
NO ₃	Lunge			

Kationen	Nachweis	Probe 1	Probe 2	Probe 3
Na ⁺	Flammenfärbung: gelb			
K ⁺	Flammenfärbung: violett, fällt mir HClO ₄ aus			
Li ⁺	Flammenfärbung: rot			
NH ₄ ⁺	+ NaOH -> alkalisch			

Gesamtanalyse

Spätestens an diesem Punkt hat man jede Analyse satt, aber keine Angst, überraschenderweise ist die Gesamtanalyse normalerweise nicht so schwer wie es anfänglich aussieht. Die Vorgangsweise ist im allgemeinen auch klar: bei den Anionen fängt man oben in der Liste an und arbeitet sich langsam nach unten vor. Bei den Kationen empfiehlt es sich in eine HNO₃ sauere Lösung HCl einzutropfen. Sollte sich ein weißer Niederschlag bilden, so liegt der Verdacht nahe, daß die Lösung Hg, Pb oder Ag beinhaltet. Sollte sich kein Niederschlag bilden, dann kann man normalerweise eben diese Substanzen mit ziemlicher Sicherheit ausschließen. Danach sollte man in die überstehende Lösung H₂S einleiten und wie gehabt die Farben beobachten. Für die noch übrigen Kationen hat sich erfahrungsgemäß herausgestellt, daß die Einzelnachweise schneller und genauer gehen als jeglicher Trennungsgang. Nun aber viel Spaß...

Raga	

Kationen	Nachweis	Probe 1	Probe 2	Probe 3
Zn	mit Blutlaugensalz> braun			
Mn	in HNO ₃ ansäuern, PbO ₂ zugeben, erhitzen, violett			
Fe	Blutlaugensalz -> blau, KSCN -> rot			
Cr	Phosphorsalzperle: grün			
Al	mit Morin, fluoresziert			
Co	P-Perle: blau, mit NaNO ₂ +NH ₄ Ac -> gelb			
Ni	mit Dimethylglioxim -> rot, nicht voluminös			
NH ₄ ⁺	mit NaOH, angefeuchtetes Indikatorpapier->blau			
Ag	Pfennig			
Hg	Pfennig, mit NH ₃ schwarz			
Pb	mit H ₂ SO ₄ als PbSO ₄ ausfällen oder Dithizon			
Bi	HNO ₃ sauer + Oxim + KI(fest)> orange			
Cd	mit H ₂ S gelber voluminöser Niederschlag			
Cu	mit NH ₃ und NaOH blau			
Sn	Glühröhrchenprobe			
As	Marshe Probe, löslich in NH ₃ + H ₂ O ₂			
Sb	Marshe Probe			
Na	Flammenfärbung: gelb			
K	Flammenfärbung: violett, fällt mir HClO ₄ aus			
Li	Flammenfärbung: rot			

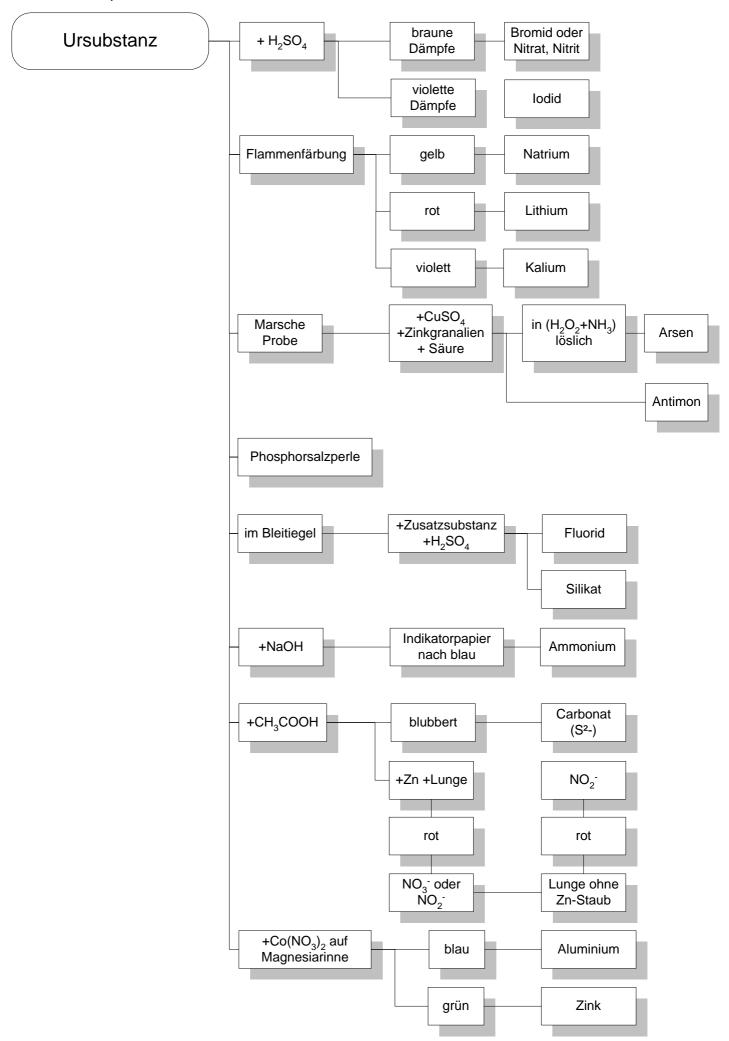
Anionen	Nachweis	Probe 1	Probe 2	Probe 3
CN ⁻	Nachweis als Berliner Blau			
SCN ⁻	mit Co(NO ₃) ₂ > blau			
S ²⁻	mit HCl H ₂ S Geruch, PbAc-Papier>schwarz			
SO ₃ 2 ⁻	Lsg. + Formaldehyd + Phenophtalein> rot			
SO ₄ 2	Entfärbung von Bariumrhodizonat			
S ₂ O ₃ ²⁻	mit FeCl ₃ > Violettfärbung			
PO ₄ ³⁻	mit ZrOCl ₂ > weißer flockiger Niederschlag			
Cl	AgNO ₃ , (NH ₄) ₂ CO ₃ , wieder AgNO ₃			
Br⁻	Lsg. + Fluorescein +(Eisessig+H ₂ O ₂)->eindampfen->rot			
Γ	violette Dämpfe,Lsg.+H ₂ SO ₄ +CHCl ₃ +Chlorwasser->violett			
CIO ₃	Verreiben mit elementarem Schwefel> es kracht			
BrO ₃	Mit MnSO ₄ und H ₂ SO ₄ > Rotfärbung			
O ₂ 2 ⁻	K ₂ Cr ₂ O ₇ +H ₂ SO ₄ +Ether>kühlen +Lsg> blauer Ring			
IO ₃	Lsg. +AgNO ₃ , in NH ₃ lösen + H ₂ SO ₃ -> gelbes AgI			
F ⁻	Ätzprobe, Kriechprobe, Wassertropfenprobe			
SiO ₃ ² -	Wassertropfenprobe			
BO ₃ ³⁻	+H ₂ SO ₄ +Methanol -> grüne Flamme			
CO ₃ 2-	CO ₂ Nachweisgerät			
NO ₂	Lunge, mit FeSO ₄ in schwach sauerer Lsg>braun			
NO ₃	Lunge			

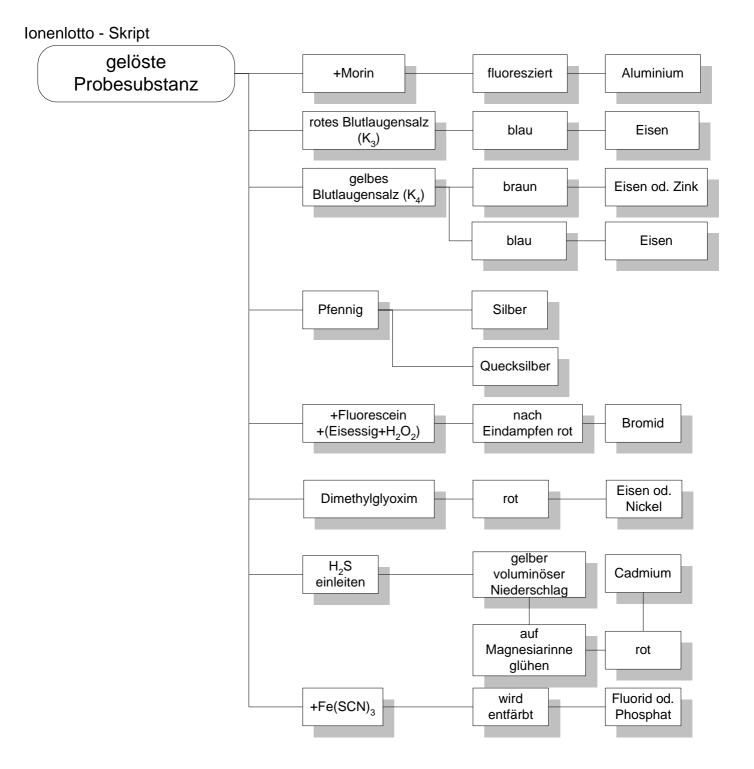
Prüfungsanalyse

Endlich ist er gekommen, der Tag der Entscheidung, der letzte Tag. Frisch ausgeschlafen sollte man sich schnell ans Werk machen, denn schließlich hat man normalerweise nur einen Nachmittag Zeit. Aber keine Angst, die Analysen sind genau vordefiniert und zwar nicht vom Mixer sondern vom Chef persönlich und es hat sich herausgestellt, daß dieser es wirklich versteht einen vor lösbare Probleme zu stellen.

Die Analyse selbst ist analog zu der Gesamtanalyse, jedoch können viel weniger Ionen drinnen sein. Deshalb habe ich mir eine Art Trennungsgang überlegt, der die Arbeit rationalisieren kann, da man sich nur eine gewisse Anzahl von Lösungen herstellen muß. Ihr findet eine graphische Übersicht auf den nächsten Seiten.

Vielleicht noch ein paar Worte zur Bewertung: die Analysesubstanz beinhaltet sechs Ionen. Es müssen entweder fünf, sechs oder sieben bei der Abgabe angegeben werden. Für jedes + x oder –x wird die Note abgesenkt. Hat man alles richtig, kriegt man eine 0,7; dann wird über 1,0; 2,0 und 3,0 bis 4,0 abgestuft. 4,0 ist die schlechteste Note, die man erhalten kann, war man noch schlechter muß man die Prüfungsanalyse noch einmal machen. Man sieht leicht, daß es sich durchaus empfiehlt z.B. das sechste Ion nicht anzugeben, falls man sich darüber nicht ganz sicher ist, da man falls die anderen fünf richtig sind eine 1,0 kriegt. Ist das sechste Ion falsch und die anderen fünf richtig, gibt es nur eine 2,0.


Wie dem auch sei, normalerweise sollten fast alle die Prüfungsanalyse gleich beim ersten Anlauf schaffen und letztendlich kommt es auf die Note auch nicht so an ③.


Kationen	Nachweis	
Zn ²⁺	mit Blutlaugensalz> braun	
Mn ²⁺	in HNO ₃ ansäuern, PbO ₂ zugeben, erhitzen, violett	
Fe ^{2+/3+}	Blutlaugensalz -> blau, KSCN -> rot	
Cr ²⁺ Al ³⁺ Co ²⁺ Ni ²⁺	Phosphorsalzperle: grün	
Al ³⁺	mit Morin, fluoresziert	
Co ²⁺	P-Perle: blau, mit NaNO₂+NH₄Ac -> gelb	
Ni ²⁺	mit Dimethylglioxim -> rot, nicht voluminös	
NH ₄ ⁺	mit KOH, basisch	
Ag ⁺	Pfennig	
Hg ²⁺	Pfennig, mit NH3 schwarz	
Pb ²⁺	mit H ₂ SO ₄ als PbSO ₄ ausfällen oder Dithizon	
Bi ³⁺	HNO ₃ sauer + Oxim + KI(fest)> orange	
Cd ²⁺	mit H ₂ S gelber voluminöser Niederschlag	
Cd ²⁺ Cu ²⁺ Sn ⁴⁺	mit NH₃ und NaOH blau	
Sn ⁴⁺		
As ³⁺	Marshe Probe, löslich in (NH ₃ + H ₂ O ₂)	
Sb ³⁺	Marshe Probe	
Na⁺	Flammenfärbung: gelb	
K ⁺ Li ⁺	Flammenfärbung: violett, fällt mir HClO ₄ aus	
Li ⁺	Flammenfärbung: rot	

Prüfungsanalysa

Anionen	Nachweis	
Cl	AgNO ₃ , (NH ₄) ₂ CO ₃ , wieder AgNO ₃	
Br ⁻	Lsg. + Fluorescein +(Eisessig+H ₂ O ₂)->eindampfen->rot	
Γ	violette Dämpfe,Lsg.+H ₂ SO ₄ +CHCl ₃ +Chlorwasser->violett	
F ⁻	Ätzprobe, Kriechprobe, Wassertropfenprobe	
SiO ₃ ²-	Wassertropfenprobe	
SiO ₃ ² -NO ₂	Lunge, mit FeSO ₄ in schwach sauerer Lsg>braun	
NO_3^{-1} PO_4^{-3-1} CO_3^{-2} SO_4^{-2} S^2	Lunge	
PO ₄ ³⁻	mit ZrOCl ₂ > weißer flockiger Niederschlag	
CO ₃ ²⁻	CO₂ Nachweisgerät	
SO ₄ 2 ⁻	Entfärbung von Bariumrhodizonat	
S ²	mit HCl H ₂ S Geruch, PbAc-Papier>schwarz	

© Ondrej Burkacky 1999-2000, downloaded @ www.chemiestudent.de

Ionenlotto - Skript

Toxikologie des Ionenlottos

Der folgende Abschnitt ist lediglich "nice to know" und keine Pflicht, verlängert aber unter Umständen das Leben durch Senkung der Risiken, insbesondere des Krebsrisikos.

Zuerst einmal sollte erwähnt werden, daß praktisch alle in diesem Praktikum verwendeten Chemikalien und Analysen mehr oder weniger giftig sind.

Dies gilt insbesondere für die "Chemikerversion", aber auch in gehörigem Maße für Biologen und Pharmazeuten.

Im folgenden soll auf einige Stoffe und Stoffgruppen eingegangen werden.

Schwefelwasserstoff

Das Gas ist in niedriger Konzentration (noch nicht gefährlich, aber unangenehm) recht gut "wahrzunehmen", betäubt aber in höherer (gefährlicher) Konzentration die Geruchsnerven! Es ist hochtoxisch, daher immer im Abzug arbeiten!

Nebenbei: **Thioacetamid** ist hochgradig krebserregend, also auch nicht die tollste Alternative, wenn vorhanden.

Quecksilber, Blei, Cadmium

Sind typische Schwermetalle, Vergiftungen mit ihnen äußern sich angeblich in so netten Symptomen wie Senilität und Haarausfall. Beim Arbeiten mit diesen Verbindungen sind Handschuhe zu empfehlen, außerdem sollte es bei Quecksilber wenn möglich vermieden werden das Metall durch Reduktion elementar darzustellen, da seinen Dämpfe bekanntermaßen ebenfalls stark giftig sind.

Chrom und Chromate

Sie gelten als krebserregend.

Arsen(Antimon)

Alle Arsenverbindungen sind giftig!

Besonders heimtückisch sind die Wasserstoffverbindungen von Arsen und Antimon. Diese bei Reduktion mit Zink und HCl (Marsche Probe) oder durch ähnliche Vorgänge entstehenden Gase sind wesentlich giftiger als Schwefelwasserstoff und erst in Konzentrationen wahrnehmbar, die schon nach kurzer Zeit ernste Schäden oder den Tod hervorrufen. Beim Bemerken eines knoblauchartigen Geruchs sofort raus!!

Cyanid

Das Ansäuern cyanidhaltiger Lösungen sollte tunlichst unterlassen werden, da hierbei HCN (Blausäure)-Entwicklung eintritt. Das Gas hat, wie die entsprechenden Salze einen charakteristischen Geruch, der die zweifelsfreie Identifikation erlaubt. Leider können ca. 30-50% der Menschen ihn genetisch bedingt nicht wahrnehmen, der Rest erkennt ihn nach dem Erstkontakt garantiert wieder. Cyanide hemmen im Körper ein Enzym das für die Zellatmung benötigt wird, man erstickt also von innen (und läuft später in der Leichenhalle blau an→Blausäure).

Thallium, Beryllium

Diese zwei Metalle waren früher im Praktikum anzutreffen, sind aber momentan gestrichen. Thallium kommt vor allem als Sulfat vor, welches früher als Rattengift verwendet wurde. Es verursacht typische Schwermetallvergiftungen, besitzt allerdings eine hohe Latenzzeit, d.h. es treten erst nach Jahren bzw. Jahrzehnten Schäden auf. Es soll außerdem carcerogen sein.

Beryllium ist hochgradig erbgutschädigend und soll so giftig sein, daß eh niemand mit dem Zeug arbeiten will.

Selen, Tellur

Die meisten Verbindungen dieser Metalle sind giftig. Besondere Beachtung verdienen wiederum die Wasserstoffverbindungen, die in der gleichen wie beim Arsen beschrieben Weise freigesetzt werden können.

Diese Gase sind definitiv das giftigste des ganzen Praktikums!!

Gegen diese Stoffe wirken Schwefelwasserstoff und einige chemische Kampfstoffe harmlos. Die Gase sollen retichartigen Geruch haben, aber wenn dieser wahrgenommen wird, bleibt wahrscheinlich eh nicht mehr viel Zeit.

(Der Autor dieses Textes ist für seinen bedenkenlosen Umgang mit giftigen Substanzen bekannt, hat aber von diesen Gasen tunlichst die Finger gelassen!!)